LOADING

加载过慢请开启缓存 浏览器默认开启

9.1 群论Intro

Binary operation

Defination: 对两个对象进行操作的运算称为二元运算。一般在《离散数学》这门课中只研究离散结构,e.g. 集合。

Some Properties of Binary Operations

Closure

Defination: 设集合 S 有二元运算∗, 若对 S 中的任意两个元素 \(a_1\)\(a_2\), 都有: \(a_1∗a_2∈S\), 则称运算∗对集合 S 封闭。

Commutative

Defination: 交换律也称为Abel 律,设有代数 \((S,∗)\),若对任意 \(a_1,a_2∈S\),都符合等式: \(a_1∗a_2=a_2∗a_1\),那么称代数 \((S,∗)\) 运算符合交换律。
推广: 如果 \((S,∗)\) 运算符合交换律,那么对于运算序列 \(a_1∗a_2∗...∗a_n\),设 \(θ(12...n)\) 为任意重排列,那么有: \(a_θ(1)∗a_θ(2)∗...∗a_θ(n)=a_1∗a_2∗...∗a_n\)

Associative

Defination: if * is a binary operation, then * is associative or has the associative property:\((x * y) * z = x * (y * z)\),在运算过程中不需要再考虑括号了!

Distributive

略。

De Morgan‘s laws

扔个PPT在这。

Idempotent

Defination: \(a * a = a\)

Note!

An operation has a property means the statement of the property is true when the operation is used with any objects in the structure.

A binary operation on a set

Defination: Everywhere defined \(f:A×A\rightarrow A\),同时需要满足封闭性和运算结果唯一,即双射性质。

Tables(运算表)

Defination: If A is a finite set, we can define a binary operation on A by means of a table.

Some Special Elements

Identity(中性元)

Defination: \(e∗x=x∗e=x\)

Zero(零元)

Defination: \(\theta ∗ x=x ∗ \theta= \theta\)

Inverse(逆元)

Defination: \(x * y = y * x = e\),两者互为逆元

Note!

  1. 单位元以及零元的唯一性
  2. 如果\(\left| A \right| > 1, \theta \neq e\)
  3. 可结合的运算逆元唯一性